混沌系统中仿真预测的准确性严重依赖于预测初始化时系统状态的高质量估计。数据同化方法用于通过系统地结合噪音,不完整的观察和系统动态的数值模型来推断这些初始条件,以产生有效的估计方案。我们介绍了摊销同化,这是一种学习的框架,用于从嘈杂的观察序列中吸收动态系统,无需基础真理数据。我们通过使用可分辨率模拟来激励来自自我监控的自我监督剥夺到动态系统设置的强大结果来激励框架。跨几台基准系统的实验结果突出了我们对广泛使用的数据同化方法的提高效果。
translated by 谷歌翻译
解释性学者通过手动采样文档,应用代码以及将代码精炼和整理成类别,直到出现有意义的主题,从而从文本语料库中产生知识。鉴于大量的语料库,机器学习可以帮助扩展此数据采样和分析,但先前的研究表明,专家通常关注算法可能破坏或推动解释性奖学金。我们采用以人为本的设计方法来解决围绕机器辅助解释性研究的关注,以构建学术研究,该研究将机器中的集群算法纳入了脚手架解释性文本分析。随着学者将代码应用于文档和完善它们,所得编码的模式用作结构化元数据,该元数据限制了从语料库推断出的层次文档和单词簇。这些集群的交互式可视化可以帮助学者们战略性地对文档进行进一步的洞察力进行洞察力。 Scholastic证明了采用熟悉隐喻的以人为中心的算法设计和可视化如何通过交互式主题建模和文档群集来支持归纳和解释性研究方法。
translated by 谷歌翻译
加强学习(RL)代理通常通过其预期值在测试方案的分布中进行评估。不幸的是,这种评估方法为超出测试分布以外的部署后概括提供了有限的证据。在本文中,我们通过将最新的清单测试方法从自然语言处理扩展到基于计划的RL来解决此限制。具体而言,我们考虑使用学习过渡模型和价值功能通过在线树搜索做出决策的RL代理。关键思想是通过清单方法来改善对未来绩效的评估,以探索和评估树木搜索过程中代理商的推论。该方法为用户提供了界面和一般查询规则机制,用于识别潜在的推理缺陷并验证预期的推理不变。我们介绍了一项涉及知识渊博的AI研究人员的用户研究,使用该方法评估训练有素的代理商,可以玩复杂的实时策略游戏。结果表明,该方法有效地允许用户识别代理推理中以前未知的缺陷。此外,我们的分析提供了有关AI专家如何使用这种测试方法的见解,这可能有助于改善未来的实例。
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
Machine learning methods have seen increased application to geospatial environmental problems, such as precipitation nowcasting, haze forecasting, and crop yield prediction. However, many of the machine learning methods applied to mosquito population and disease forecasting do not inherently take into account the underlying spatial structure of the given data. In our work, we apply a spatially aware graph neural network model consisting of GraphSAGE layers to forecast the presence of West Nile virus in Illinois, to aid mosquito surveillance and abatement efforts within the state. More generally, we show that graph neural networks applied to irregularly sampled geospatial data can exceed the performance of a range of baseline methods including logistic regression, XGBoost, and fully-connected neural networks.
translated by 谷歌翻译
This paper presents the Crowd Score, a novel method to assess the funniness of jokes using large language models (LLMs) as AI judges. Our method relies on inducing different personalities into the LLM and aggregating the votes of the AI judges into a single score to rate jokes. We validate the votes using an auditing technique that checks if the explanation for a particular vote is reasonable using the LLM. We tested our methodology on 52 jokes in a crowd of four AI voters with different humour types: affiliative, self-enhancing, aggressive and self-defeating. Our results show that few-shot prompting leads to better results than zero-shot for the voting question. Personality induction showed that aggressive and self-defeating voters are significantly more inclined to find more jokes funny of a set of aggressive/self-defeating jokes than the affiliative and self-enhancing voters. The Crowd Score follows the same trend as human judges by assigning higher scores to jokes that are also considered funnier by human judges. We believe that our methodology could be applied to other creative domains such as story, poetry, slogans, etc. It could both help the adoption of a flexible and accurate standard approach to compare different work in the CC community under a common metric and by minimizing human participation in assessing creative artefacts, it could accelerate the prototyping of creative artefacts and reduce the cost of hiring human participants to rate creative artefacts.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
Although pre-trained language models (PLMs) have shown impressive performance by text-only self-supervised training, they are found lack of visual semantics or commonsense, e.g., sizes, shapes, and colors of commonplace objects. Existing solutions often rely on explicit images for visual knowledge augmentation (requiring time-consuming retrieval or generation), and they also conduct the augmentation for the whole input text, without considering whether it is actually needed in specific inputs or tasks. To address these issues, we propose a novel visually-augmented fine-tuning approach that can be generally applied to various PLMs or NLP tasks, without using any retrieved or generated images, namely VAWI. Specifically, we first identify the visually-hungry words (VH-words) from input text via a token selector, where three different methods have been proposed, including syntax-, attention- and learning-based strategies. Then, we adopt a fixed CLIP text encoder to generate the visually-augmented representations of these VH-words. As it has been pre-trained by vision-language alignment task on the large-scale corpus, it is capable of injecting visual semantics into the aligned text representations. Finally, the visually-augmented features will be fused and transformed into the pre-designed visual prompts based on VH-words, which can be inserted into PLMs to enrich the visual semantics in word representations. We conduct extensive experiments on ten NLP tasks, i.e., GLUE benchmark, CommonsenseQA, CommonGen, and SNLI-VE. Experimental results show that our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales, and outperform several competitive baselines significantly. Our codes and data are publicly available at~\url{https://github.com/RUCAIBox/VAWI}.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译